# Aircom® 15

# ultra low loss up to 10 GHz



Aircom 15 is an ultra low loss coaxial cable with the maximum frequency of 10 GHz. It is characterized by a very low weight and a very low attenuation. Manufactured highly precisely this cable has a hybrid inner conductor of copper-clad aluminium wire (CCA), where copper cladding is covering the inner aluminium core. Combining copper's good electrical conductivity and aluminium's light weight in a composite material makes Aircom 15 perfectly suited for most RF applications. The precise formability of the aluminum core is responsible for almost no impurities in the entire frequency range. The skin effect ensures a high performance RF line. In addition, the cable is highly suitable for digital transmission modes due to its outstanding PIM (passive intermodulation) performance.

The extremely low attenuation of Aircom 15 is achieved by a low loss PE dielectric. The material is also resistant to moisture. Another feature of Aircom 15 is its double shielding which is constructed of a thin, overlapping alulamnate foil and an additional shield braiding of tinned copper wires with 70% coverage. The black PVC jacket of Aircom 15 is UV-stabilized. Aircom 15 is particularly suitable for mobile communication, for the installation of antenna systems and for numerous other RF and 5G applications.

#### Kenndaten

| Diameter                   | 14,0 ± 0,3 mm       |
|----------------------------|---------------------|
| Impedance                  | 50 $\pm$ 2 $\Omega$ |
| Attenuation at 1 GHz/100 m | 8,7 dB              |
| fmax                       | 10 GHz              |
| Euroklasse nach EN 50575   | Fca                 |

#### **Characteristics**

Conductor material according to DIN EN 13602 Cu-

Screen material according to DIN EN 13602 Cu-ETP-  $\Delta$  -R

Insulating material according to DIN EN 50290-2-23 (VDE 0819), table L/MD (HD 624.3)

Jacket material according to DIN EN 50290-2-22 (VDE 0819), compound type TM 52 (HD 624.2) RoHS compliant (Directive 2011/65/EC & 2015/863/EU RoHS 3)

**UV-resistant** 

#### **Technical data**

| Inner conductor     | Hybrid CCA – bare copper-clad aluminium wire |
|---------------------|----------------------------------------------|
| Inner conductor Ø   | 1 x 4,4 mm                                   |
| Dielectric          | blue foamed Polyethylene (PE) with skin      |
| Dielectric Ø        | 11,3 mm                                      |
| Outer conductor 1   | alulaminate foil overlapped                  |
| Shielding factor    | 100%                                         |
| Outer conductor 2   | shield braiding of tinned copper wires       |
| Shielding factor    | 70%                                          |
| Outer conductor Ø   | 12,1 mm                                      |
| Jacket              | PVC black, UV-resistant                      |
| Weight              | 166 kg/km                                    |
| Min. Bending radius | 5XØ single, 10XØ repeated                    |
| Temperature range   | -55 bis +85°C Transport & fixed installation |
|                     | -40 bis +85°C Flexible use                   |
| Pulling strength    | 1400 N                                       |

## **Electrical data at 20°C**

| Capacitance (1 kHz)           | 78 nF/km                 |
|-------------------------------|--------------------------|
| Velocity factor               | 0,85                     |
| Screening attenuation 1 GHz   | ≥ 80 dB                  |
| DC-resistance inner conductor | $\leq$ 2,0 $\Omega$ /km  |
| DC-resistance outer conductor | $5 \Omega/km$            |
| Insulation resistance         | $\geq$ 10 G $\Omega$ *km |
| Max. Voltage                  | 7 kV                     |
| Test voltage DC (wire/screen) | 9 kV                     |

|                       | Aircom 15 | <b>RG 213/U</b> | <b>RG 58/U</b> |
|-----------------------|-----------|-----------------|----------------|
| Capacity              | 78 pF/m   | 101 pF/m        | 102 pF/m       |
| Velocity factor       | 0,85      | 0,66            | 0,66           |
| Attenuation (dB/100m) |           |                 |                |
| 10 MHz                | 0,70      | 2,00            | 5,00           |
| 100 MHz               | 2,40      | 7,00            | 17,00          |
| 500 MHz               | 5,80      | 17,00           | 39,00          |
| 1000 MHz              | 8,70      | 22,50           | 54,60          |
| 3000 MHz              | 16,90     | 58,50           | 118,00         |



### Frequenz (MHz)

## Typ. Attenuation (db/100 m at 20°C)

| 10 MHz   | 0,70 | 1296 MHz  | 10,00 |
|----------|------|-----------|-------|
| 20 MHz   | 0,90 | 1500 MHz  | 10,90 |
| 50 MHz   | 1,46 | 1800 MHz  | 12,20 |
| 100 MHz  | 2,40 | 2000 MHz  | 13,10 |
| 144 MHz  | 2,77 | 2400 MHz  | 14,70 |
| 200 MHz  | 3,25 | 3000 MHz  | 16,90 |
| 300 MHz  | 4,10 | 4000 MHz  | 20,20 |
| 432 MHz  | 5,23 | 5000 MHz  | 23,50 |
| 500 MHz  | 5,80 | 6000 MHz  | 26,50 |
| 800 MHz  | 7,60 | 8000 MHz  | 32,10 |
| 1000 MHz | 8,70 | 10000 MHz | 37,50 |
|          |      |           |       |

# Max. Power handling (W at 40°C)

| 10 MHz   | 8.700 | 3000 MHz  | 375 |
|----------|-------|-----------|-----|
| 100 MHz  | 2.660 | 5000 MHz  | 270 |
| 500 MHz  | 1.100 | 6000 MHz  | 240 |
| 1000 MHz | 740   | 8000 MHz  | 195 |
| 2000 MHz | 470   | 10000 MHz | 170 |
| 2400 MHz | 430   |           |     |
|          |       |           |     |